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1 Introduction 

We consider in this paper multi-product, lot-sizing problems that arise in man- 
ufacturing and inventory systems. We describe the problem in a manufactruring 
setting. There is a set N of products. For each product j E N there is a set ~-j 
(called predecessors of product j) of products consumed in producing product 
j. We define the product network G to be a directed network with node set N 
and arc set A = {(i,j) : i E ~rj). In other words, the network G corresponds to 
the flow of materials in the system and contains no circuit. 

External demand di for product i is assumed to be constant in time. Clearly 
in order to satisfy the demand orders should be placed for the products dynami- 
cally in time. If an order is placed for product i, an ordering cost Ki is incurred. 
Moreover, an incremental echelon holding cost hi is incurred per unit time the 
item spends in inventory. The production rate is assumed to be infinite. The 
objective is to schedule orders for each of the products over an infinite horizon 
so as to minimize long-run average cost. 

As the optimal dynamic policy can be very complicated, the research com- 
munity (see for instance Roundy [18, 19], Jackson, Maxwell and Muckstadt [10], 
Muckstadt and Roundy [14]) has focused on stationary and nested policies de- 
fined as follows: Orders are placed periodically in time at equal intervals, for 
each of the products in the system (stationary policies). If product j precedes 
product i, then an order is placed for product j only when an order is placed for 
product i at the same time (nested policies). Therefore, under a stationary and 
nested policy the objective is to decide the period Ti that an order is placed. 
The reason stationary and nested policies are attractive is that they are easy to 
implement. Muckstadt and Roundy [14] discuss in detail the rationale of using 
order intervals ~ as variables. 

The problem of designing an optimal stationary and nested policy can then 
be formulated (see [18]) as the following nonlinear integer programming problem. 

(PNs) = m i n  G(T) -= i~eN (~  + Hi~) 

~jj e {1,2,3.. .} if (i,j) e A, 
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Ti = kiTL for each i, ki E Z+ 

Period TL is called the base period and it can be constant or allowed to vary, 
depending on the model. The coefficient Hi is given by Hi = (hi - ~;-]~je~ hj)Di 
and Di represents the aggregate demand, which is calculated recursively starting 
from products with si = g by Di = di + ~k~s~ Dt~ (si is the set of successors of 
product i). 

We consider the following convex relaxation of the problem: 

T~ >_ ~ if (i,j) E A, 
2q >_ TL for each i. 

Notice that the constraints Ti > Tj model the condition that policies are nested. 
As the objective function is convex, the relaxation (PR) can be solved in 

polynomial time using interior point algorithms or the algorithm by Hochbaum 
and Shanktikumar [9]. For systems with special structure the runnning time can 
be improved substantially. For instance, ff G is a tree, Jackson and Roundy [11] 
show that the relaxed problem can be solved in O(nlogn)  time, where n -- ]N I, 
When G corresponds to a star graph, Queyranne [151, and also Lu Lu and Posner 
[12] showed that the relaxed problem can be solved in O(n) time, using a linear 
time median finding algorithm. 

Regarding approximation algorithms, Roundy ([18, 19]), and Maxwell and 
Muckstadt [13] showed how to round an optimal solution of the relaxed problem 
(PR) to a feasible solution for (PJvs). The policies constructed are called power-  
of-two policies, where each 7~ is of the form 2P~TL, where p~ is integer. Let 
ZH be the value of the heuristic used. They obtained the following bounds: 

1. f f  TL is not fixed, but subject to optimization, then 

Z / / <  1 
~ 1 . 0 2 .  

zR - v~log  2 

2 .  If TL is fixed, then 

- -  ~ 1 . 0 6 .  
z R -  

The technique used is deterministic rounding and convex duality. The tech- 
nique utilizes the properties of the optimal relaxed solution. In both cases the 
bounds are tight. These results are often referred in the literature as 98% and 
94% effective lot-sizing policies respectively. 

These results have been extensively studied and extended to other versions 
of lot-sizing problems: finite production rates (Atkins, Queyranne and Sun [1]), 
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individual capacity bounds of the form 2t~TL < Ti < 2UiTL and more general 
cost structures (Zheng [21]), and backlog (Atkins et al. [1]). All these extensions 
use determinisitc rounding to generate power-of-two policies with the same 94% 
and 98% bounds. 

In this paper, we propose a new approach to these lot-sizing problems that 
uses randomized rounding. This design technique has been used extensively by 
the discrete optimization community. It was first introduced by Raghavan and 
Thompson [16], and was used subsequently for a variety of other combinatorial 
problems. See for instance Goemans and Williamson [7, 8], Bertsimas and Vohra 
[3], Bertsimas et al. [2]. Our contributions in this paper are as follows: 

. We propose new 94% and 98% randomized rounding algorithms for Prob- 
lem (PNs) under both the fixed and the variable base period models. Our 
proof is simple and unlike the original deterministic rounding does not 
depend on the structure of the optimal solution. Roundy's 98% algorithm 
can be obtained by derandomizing our algorithm. However, derandomiz- 
ing the 94% algorithm leads to a different deterministic algorithm. The 
randomized rounding method is interesting in its own right as it introduces 
dependencies in the rounding process and generates random variables with 
distributions with nonlinear density functions. 

. We study a generalization of the fixed based model by allowing the base 
period TL to vary over a finite set of choices {2k/PTL : k integer}, with 
p, TL fixed. We propose a randomized rounding algorithm that produces a 

1 
power-of two policy with bound ~ ~ +1 , where p denote the number 

of points TL is allowed to vary. For p = 1 and p - or, the bound reduces to 
1.06 and 1.02 respectively. For the one warehouse, multi-retailer problem 
(OWMR), Lu Lu and Posner [12] have also obtained a similar bound for 
a class of integer-ratio policies. 

3. For a general production distribution network under nested policies, we 
propose new convex relaxations and randomized rounding algorithms that 
use ~ = 2P~TL or 3.2P~TL. This improves the bound for the fixed base pe- 
riod case from 1.06 to 1.043 and for the special case of Problem (OWMR) 
to 1.031. 

. Our techniques generalize to several other extensions considered in the 
literature (eapacitated versions, submodular cost functions and multiple 
resource constrained problems) 
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2 R a n d o m i z e d  r o u n d i n g  and  l o t - s i z i n g  prob-  
l e m s  

In this section, we introduce the key randomized rounding ideas used in this 
paper. 

2 .1  A n e w  9 4 %  a p p r o x i m a t i o n  a l g o r i t h m  

In this section we consider the case of fixed base period TL. We consider the 
following rounding scheme: 

A l g o r i t h m  A: 
Let T "- (T1, . . . ,  T,~) be a feasible solution to relaxation (PR), and 
Ti -- 2P~z~TL, where 1 ~ zi _ 2. Generate a point Y in the interval 
[1, 2], with probability distribution F(y) - ~1+y~/2" If z~ < Y, then 

T~ ~ = 2V'TL, else T~ ~ = 2P'+ITL. 

The above rounding scheme always generates a feasible solution (T~, T~, . . . ,  T~) 
to problem (PNs). We only need to check that the precedence constraints 
T/<_ Tj are preserved. If pj > p~, then Tf > T~ ~ If pj = Pi, then since Tj > T/, 
we must have zj > zi. Hence zi > y only if zj > y. 

T h e o r e m  1. Given any feasible solution (T1, . . . , T ,  ) to Problem ( PR) with cost 
G(T), Algorithm A returns a power-of-two policy (with fixed base TL) with an 
expected cost of not more than 1.06 G(T).  

Proof :  It is easy to see that 

E(T~ ~ = 2P'TL(1 -- F(z~)) + 2P'+ITLF(z~) = Ti 
1 + F(z~) 

Zi 

_ 3~ J i + l / v ~  
= ~ < 2 ~ ~ 1.06 ~ .  

Similarly, 

~ i  ~ 1 ( 1 - F ( z ' ) ) +  11 T~. 2 E( . ) -- 22'TL 2P' TLF(z ' )  = (1 e(z~))z,  

1 3z~ v~+l/V~ 1 
- ~z~+2 < 2 ~" 

3Z '  The bound follows since the maximum value of the function ~ is at most 

3V~/4. n 
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Note that the distribution function F(y) is chosen so that (1 + F(y))/y = 
y(1 - F(y)/2) --- 3y/(y ~ + 2). The maximum is attained at the point y = v~  

with a value of ~ ~ 1.06. Furthermore, using the optimal solution to (PR) as 
input to the rounding process, we obtain a 94% approximation algorithm to the 
original lot-sizing problem. 
De- randomlza t lon .  The above randomized algorithm can be made determin- 
istic: Sort the zi's in non-decreasing order, say zt _< z2 _< . . .  _.< zn. For all y 
in [zi, zi+t), the randomized algorithm returns the same solution. Hence, there 
are at most n + 1 distinct solutions obtained. Thus the best solution can be 
obtained in O(n log n) time, which is the time needed for the sorting operation. 

2 .2  T h e  9 8 %  a p p r o x i m a t i o n  a l g o r i t h m  r e v i s i t e d  

The same insensitivity result can also be improved to a 98% guarantee, if one 
allows the base period TL to vary, i.e., TL is a variable in (PR). In fact, Roundy's 
98% algorithm [18, 19] already has this feature. We recast Roundy's algorithm 
into the following randomized rounding algorithm: 

Algorithm B: 
Let T = (T1,. . . ,  T,, TL) be a feasible solution to (PR), with TL > O. 
Let 7] = 2P~TLzi, where 1 < zi < 2. Generate a point Y in the 
interval [1, 2], with probability distribution F(y) = ~ If Y > zl, log 2 " 

then T/~ = 2 e ' ~  else T/~ = 2 p'+I Y Let T/~ = Y 
, / 2"  2~"~L" 

The rounded solution T/~ is chosen to ensure that it lies in the interval 
[ ~ ,  v~T/]. Furthermore, it is clear that (T~', 7~ , . . . ,  T ~ T~) is a feasible solution 

to (PNs). 

T h e o r e m 2 .  Given any feasible solution (Tt , . . . ,  Tn, TL) to Problem (PR) with 
cost G(T), Algorithm B returns a power-of-two policy (T~, Ty, . . . , T ~ T~) with 

G T  expected cost at most ~ ~ 1.02 G(T). 

Proof:  Without loss of generality, we may assume TL = 1. Then 

j~' 2P'+ldy+ f;~ 2P'dy 
E(Ti~ = v~log 2 

[2(z,  - 1) + (2 - z,)]  T, 

v~  log 2 log 2 vf2" 

Similarly, 

v~ f~' 2-P'-x(1/y2)dy + V~ f~ 2-P'(1/y2)dy 
E(1/Ti ~ = 

log 2 
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v 2-p,(1/2- - 1/2+ �88 1 
log 2 - 7] log 2V~' 

and the theorem follows. [] 

D e - r a n d o m i z a t i o n .  Suppose zl < z2 < . . .  _< zn. For y in [zi, Zi+l), suppose 
the algorithm returns a policy with cost A/y  + By, then for all other y~ in the 
same interval, the algorithm returns a policy with cost A/y  ~ + By ~. By choosing a 
y~ in the interval that maximizes this term, and doing the same for each interval 
partitioned by the zi's, we obtained an O(n log n) deterministic algorithm, which 
is exactly Roundy's rounding procedure. 

The argument used above can easily be adapted to analyze more general 
costs in the objective function. For instance, we have the following: 

T h e o r e m  3. Under Algorithm B, 

3 
= T : E T (  . - 4 1 o g ( 2 )  1.082 ; 

1 1 T 3 
v~log(2) -< E ( ~ ) V ,  ~ _< 41---og(2) ; 

v~log(2) -< E(T~~ �9 j - ~ ; 

< 106  k~O / 

T2 1 The above inequalities imply new bounds (91.8%) if there are i ,  ~ , T i T j  

or T~ terms in the objective function. Tj 

2 .3  U n i f i c a t i o n  o f  t h e  9 4 %  a n d  9 8 %  b o u n d s  

The 94% and 98% performance bounds assume that the base period is fixed 
and optimally selected respectively. The 94% bound is attained by a power-of- 
two policy, where every order interval is a fixed multiple of a preselected base 
period. The 98% approximation algorithm, however~ cannot ensure that the 
base planning period belongs to a preselected set. In this section, we propose a 
technique to bridge the gap between the performance of these two algorithms, 
by giving progressively more flexibility to the choice of base periods. We assume 
that the allowed base periods are in the set ,~ = {2zp : j integer}. 

Consider the following randomized rounding algorithm. 
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A l g o r i t h m  C: 
Let 7~ = 2Wzi, where 1 < zi < 2. Let Y be a random num- 
ber generated in the interval [2 -~ ,  2~) ,  with distribution function 

21/'Y2-1 . Construct a power-of-two policy as follows: F(y) = (2tt,_i)(i+~2) 

Select the base period TL = 2 j/p with probability ~. 

{ 2p,+12  if zi > 
�9 . t  

2 P Y  T/~ = 2Pi-12p z .  i f  zi < v~ 

2 v~ 2 ~ otherwise. 

T h e o r e m 4 .  Given any feasible lot-sizing policy (711,..., T,) in (Pn) with cost 
G(T), Algorithm C returns a power-of-two policy T ~ with expected cost at most 

( :2r 
2V~p(27 - 1) ) G(T). 

Note that for p = 1 and p = ~ ,  we obtain the 94% and 98% bounds re- 
spectively. For p = 2, the bound already improves to 97%. This observation 
implies that  for the fixed base period model, the 94% bound might be improved 
considerably by considering only two distinct base periods, both integral mul- 
tiples of TL. In the next section, we use this observation to derive an improved 
approximation algorithm. 

3 An improved approximation algorithm for the 
fixed base period model 
In this section, we propose an improved approximation algorithm for the general 
problem (Plvs) under the fixed base period model. The improvement over the 
94% bound comes from having a tighter representation of the objective function 
over the discrete points {TL, 2TL, 3TL} in the interval [TL, 3TL]. We consider an 
improved relaxation of the original problem: 

n 

(P~) min ~ f [ ( T i )  
i = l  

subject to 7~ > 7~ if (i, j) e A, 7] >_ 0, 

where if(.), which is depicted in Figure 1, represents the piecewise linearization 
of fi(Ti) = Ki/Ti + HiTi over the points {TL, 2TL, 3TL}, i.e., 

f~(7~) = ( (7] - TL)f~(2TL) + (2TL -- 7~)f~(TL) if TL < T~ < 2TL, 
(T~ 2Tz.)fi(3TL) + (3TL - Ti)fi(2TL) if 2TL < Ti < 3TL. 
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l ineTzat ion  over tTL, 2T L ] 

/ 
/ linearization over [2Tt~ 3T~ 

i i 
i . . . . . . . . . . . . .  j . . . . .  

[ T L 2 T L 3 T L 

Fig. 1. Piecewise linearization of the objective function over the points TL, 2TL, 3T~. 

We introduce the following notation. Let p, q be nonnegative numbers, such 
that  p + q = 1. Let 

and 

2" ~ o / 2p + 3q/2 
~ = V p--4-~q/3' b(p) = ,V~,/-/-~2-~- 3, 

- -  - ~ q - - p  F(p,z) "- ~(p+ "~q)z2 3 

- - ~ p - q  F'(p,z)= ~(q+ ap)z2 4 
q(1 + ~z2) 

Note that  F(p,a(p)) = F'(p,b(p)) = 0, and f (p ,b(p))  = F'(p, 2a(p)) = 1. 
Furthermore, F and F' are nondecreasing in z and are valid distribution func- 
tions. Suppose further that  T* is an optimal solution to (P~). Note that  for 
T~' < 3TL, we may assume that  Ti* e {TL, 2TL, 3TL}. This follows from the 
following lemma: 

L e m m a  5. There exists an optimal solution T* with the property that Ti* E 
{TL, 2TL, 3TL} if T~* <_ 3TL. 
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Consider the following rounding algorithm: 

A l g o r i t h m  D: Let p = 0.7, q = 0.3. Let a = a(0.7) and b = b(0.3). 
Note that a < b < 2a. Select Policy 1 below with probability p, and 
Policy 2 with probability q. 
Pol icy  1: Let Ti* = 2P~TLzi, where zi is in the interval [1, 2). Let 
Y be a random number generated in the interval [a(p), b(p)] with 
distribution function F(p, y). Let 

{2e~TL if2zi < Y, 
T/I = 2P~+ITL if2zi > Y. 

Pol icy  2: Let Ti* = 3.2P'TLZ~, where z~ is in the interval [1, 2). Let 
Y' be a random number generated in the interval [b(p), 2a(p)] with 
distribution function F'(p, y). For Ti > 3TL, let 

{3.2PiTL if3z~ < Y', 
7'2 = 3.2P'+ITL if3z~ > Y'. 

For all items i with 7} = 2TL, we round them (simultaneously) to 
3TL with probability ~ and to TL with probability ~4" Note that in 
this way, for T / =  2TL, 

E(T~) 8 = 2TLE(1_). - 

Finally, if Ti* - TL, Ti 2 -- TL. 

Let T denote the vector of ordering intervals under the selected policy. 

T h e o r e m  6. The expected cost of the policy T produced by algorithm D is at 
most 1.043 times the value of the continuous relaxation (P~). 

Proof :  Without loss of generality, we assume TL = 1. If Ti* = 2, then 

E(Ti - 2TLE( ~--~) = p+ 8q = 1.0428... 

Thus we only need to consider the ease when Ti* greater than 3. Suppose Ti* 
lies in (1) [2k'a, 2k'b] or (2) (2k'b, 2k'+la]. In case (1), Policy 2 always rounds 7~ 
to 3 . 2  k~, whereas in case (2), Policy 1 always rounds Ti to 2 k~+~. 
Case ( 1 ) :  T/* lies in [2V'a, 2V'b], i.e., T/* = 2V'wi, where wi E [a, hi. Then 

E(Ti) = pE(T2) + qE(T?) = T/* (3q + p2(1 + F(p, wi))), 
wi  wi  
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and 

E ( ~i = P E ( ~'~sl ) + q E ( ~---~s~ ) =1"-~'7 i ( q "w . +p(1 F ( p , w , 

We have chosen F(p, .) such that 

3 + F(p, wi)) wi F(p, w,) q - -  + p2(1 = q-~- + p(1 )wi/2. 
w~ w~ 2 

With this choice of F(p, .), and p = 0.7, q = 0.3, we can optimize the bound 
over the range of w~ to obtain 

E(7 ) 
- - ~  = T ; E ( ~ )  < 1.043. 

Case (2) : Ti* lies in (2P'b, 2P~+la], i.e. T* = 2P~wi where wi e (b, 2a]. Then 

E(pT: + qT?) = r*(p~w ~ + q3(1 + F'(p, wi))), 
r 

and 
1 ,  3wi F'(  wi))wi/3). E ( P ~---[,I + q ~-~.2 ) = "~ t P -'4 "- + q (1 2 

We have chosen F~(p, .) such that 

P~w/4 + q3(1 + F~(P,wi wi)) = P'-4"3wi + q(1 Fl(~w~))wi/3. 

With this choice of F'(p, .), again we have 

E(pT~ + qT~ 2) . 1 1 
= E(p  + < 1.043 T,* 

Hence the result follows. [] 

We next show that if T i" > v~Ts for all i we can improve the approxima- 
tion guarantee. This result will be useful in the next section. We consider the 
following modified rounding algorithm: 

A l g o r i t h m  E: Let p = 0.5, q = 0.5. Select Policy 1 with probability 
p and Policy 2 otherwise: 
Pol icy 1: The same as in Algorithm D. 
Pol icy 2: For Ti* > 3TL, the same as in Algorithm D. For Ti* in 
[V~TL, 3TL], we round T~ to 3TL. 

The following result follows from a similar analysis to Theorem 6. 

T h e o r e m  7. If T~ >__ v~TL for all i, then the expected cost of the policy T 
obtained from Algorithm E is at most 1.031 times the optimal value of the con- 
tinuous relaxation ( PR). 
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4 An improved approximation algorithm for the 
(OWMR) problem 
In this section we improve the guarantee of 1.043 to 1.031 for the problem of a 
single warehouse supplying and distributing items to a group of n retailers. For 
distribution systems Roundy [18] has showed that the optimal nested policy 
can be arbitrarily bad compared to the optimal stationary policy. Under the 
assumption that the retailers place their order only when their inventory level 
is zero, he showed that there is an optimal stationary policy which satisfies the 
integer ratio property, i.e., the ratio of the ordering interval T/ for retailer i 
and the ordering interval To of the warehouse is either an integer or 1 over an 
integer. He has also constructed similar 94% and 98% approximation algorithms 
for problem (OWMR), with fixed and variable base period respectively. 

The problem can be modelled as follows (see [18]): 

n n 

(PowMR) min C(T)= ~ ( K J T / ) +  Z ( g ,  max(To,~) + H{~) 
i..~O i----1 

subject to ~00 E {ki, :ki integer}, 

T/ integer for all i = 0, . n, 
T L  ~ ~ ' 

where g, - �89 hod,, and Hi -- �89 ( h, - ho)d,. We consider the following relaxation: 

n . n  

(PRowMR) min ~(K, /T~)  + ~ ( g ,  max(T0,T/) + HIT/) 
i = 0  i----1 

subject to T/ _ TL for all i = 0 , . . . ,  n. 

The constraint T / >  TL is a relaxation of the condition that each T/is an integral 
multiple of TL. Let T/*, i = 0, l , . . . ,  n be a solution of the relaxation (PRowMR). 

In this section, we improve on the approximation bound for the fixed base 
period model, by using six stronger relaxations. These relaxations correspond 
to the requirement that either T~) ~_ 6TL or T~) = kTL for k in {1, 2, 3, 4, 5}. 

We first consider the relaxation 

n 

(Ps) Zs -- m i n { Z ( f ~ ( ~  ) +g/max(T0,T/)) +go~To: TO >_ 6TL,Ti >_ TL}, 
i----1 

where f~(T/) = fi(Ti) -- Ki /T/+ Hi~ if T/ >_ 3TL, and f~(T~) is the piecewise 
linearization of f~(T/) over the points {TL, 2TL, 3TL}. Note that this relaxation 
provides a lower bound to the optimal value of (PowMR). Z6 can be computed 
in O(n) time by using a linear time median finding algorithm, as suggested in 
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Queyranne [15] or Lu Lu and Posner [12]. Let T/* be the optimal solution of 
relaxation (P6). Following Lemma 5 we may assume that T/* e {Ts 2TL, 3TL) 
if T/* < 3TL. We apply Algorithm E that leaves those T* with values TL or 2TL 
unchanged. 

L e m m a  8. Algorithm E applied to an optimal solution to relaxation (P6) pro- 
duces an integer ratio policy with cost within 1.031 of Z6. 

Proof:  Policies 1 and 2 of Algorithm E round those T/* with values greater than 
or equal to 3TL to a power-of-two policy of the type 2PITL or 2P~(3TL). Those 
T/* with values TL or 2TL are left unchanged. The expected gap between T/* and 
the rounded value 7} again satisfies 

E(1/7}) 
E(7}) < 1.031, < 1.031. 

T/* - l / T *  - 

Note that in addition, because of the dependence in the rounding process, 

E[max(7], T0)] = max(E[7}], E[T0])I < 1.031 max(T/*, T~). 

Note that since T~ > 6TL, T~ is rounded to a multiple of 4TL (under Policy 
1) or multiples of 6TL (under Policy 2). Therefore, the policy constructed need 
not satisfy the condition To > 6TL, since Policy 1 might round T~ down to 4TL. 
However, the policy obtained is an integer ratio policy. [3 

We next consider the case that T~ = kTL, k E {1,2,3,4,5}. Let f~(Ti) 
denote a partial piecewise linearization of fi(7}) in the interval [TL, 3kTL], 
over the points TL, kTL,2kTL, 3kTL. Particularly for k = 4, in addition to 
TL, 4TL, 8TL, 12TL we include the point 2TL in the linearization. For k E {1, 2, 3, 4, 5} 
we consider the following five relaxations, in which we fix the value of To to be 
kTL and consider the linearization f~ (7}) instead of fl (Ti): 

n 

(Pk) Zk = rain{Ca(T) = Ko/(kTL) + ~ ( g l  max(kTL, 7}) q- f~ (7~)) : !/} >_ TL}. 
i = l  

Note that each relaxation can be solved in O(n). Moreover, 

L e m m a  9. There exists an optimal solution T k fo Zk with the property that if 
T/~ < 3kTL, then 

T~' ~ {TL, kTL, 2kTL, 3kTL} for k = 1, 2, 3, 5 

T~ ~ {TL, 2TL, 4TL, 8TL, 12TL} for k = 4. 

We next show that Algorithm E applied to the optimal solution of relaxation 
(Pk) produces an integer ratio policy within 1.031 of Z~. 
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L e m m a  10. For k = 1 , . . . ,  5 Algorithm E applied to an optimal solution of 
relaxation ( Pk ) that satisfies Lemma 9 produces an integer ratio policy with cost 
within 1.031 of Z~. 

Combining Lemmas 8 and 10 we obtain 

T h e o r e m  11. For the one-warehouse-multi-retailer problem with fixed base pe- 
riod, there is an O(n) time 96.9~ approximation algorithm. 

5 E x t e n s i o n s  

Since our prior analysis did not utilize any structure of the optimal solution, 
our proof techniques cover several extensions of the basic models almost effort- 
lessly. Our techniques produce randomized rounding algorithms for the following 
problems considered in the literature: 

1. Capacitated lot-sizing problems, in which we add constraints 21~TL < 7] < 
2mTL for each i. Since the Algorithms A and B preserve these properties, 
Theorems 1 and 2 apply also for this capacitated version of the problem, 
giving rise to 94% and 98% power-of-two policies respectively. The same 
result was also derived in Federgruen and Zheng [6] by extending Roundy's 
approach to the capacitated version. 

2. Submodular ordering costs introduced in Federgruen et al. [5] and Zheng 
[211: 

(PsuB) Z = minmax XJ'( k--i + HIT/) 
T 

T~ _<Tj if (/ , j)  c A ,  

T / >  T/; for each i. 
k E P ,  

where 
P - -  {k: Z k j  < K(S), Z kj = K(N),kj  > 0}, 

j@S jEN 

and K(S) submodular. Algorithms A and B can be used to round the 
fractional optimal solution in (PsuB) to 94% and 98% optimal power-of- 
two solutions. Furthermore, if T/* _> v~TL for all i, then the fixed base 
period bound can be improved further to 96.9%, using Theorem 7. 

3. Resource constrained lot-sizing problems considered in Roundy [20], in 
which we add to (PNs) constraints of the type 

aij/7~ < Ai, i = 1, . . . ,m. 
J 
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He showed that  there is a power-of-two policy for the variable base period 
case with cost at most 1.44 times the optimal solution. We can generalize 
this result to the lot-sizing problems with submodular joint cost function. 
Consider the following algorithm: 

A l g o r i t h m  F: 
Let (k*, T*) be an optimal solution to (PsuB) with the resource 
constraints added. Use Tj = V~Tj* in Algorithm B to obtain a 
power-of-two policy T ~ . 

First note that  Tf  lies in the interval [Tj/v/'2, TjV~] and hence Tj ~ > Tj*. 
Therefore, T/~ satisfies the resource constraints. 

T h e o r e m  12. Let T* be an optimal solution to the resource constrained 
version of (PsuB). Using Algorithm F on T*, we obtain a power-of-two 
policy with cost at most 1.44 times of the optimal. 

Proof :  Since scaling by v~  does not affect the ordering of T~, the solution 
k* is also a maximum solution to G(T~ Therefore, the result follows 
directly from the following observation: 

and 

1 -T" = 1----V~T.* ~ 1.44Tj* E(T;) < V log(2) v log(2) 

< 1 1 

D 
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